If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-10q+6=0
a = 3; b = -10; c = +6;
Δ = b2-4ac
Δ = -102-4·3·6
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*3}=\frac{10-2\sqrt{7}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*3}=\frac{10+2\sqrt{7}}{6} $
| 25x-6*5x+5=0 | | 26+(3x+1)=180 | | Y=17.5x+19 | | 2y-5=4y-7 | | 3(4n=2)=5(n+3) | | 6(x+1)-10=4(x-1)2x | | 10+14k-5k=13+9k | | C(X)=50+35x | | 70+50x=600 | | Y=8.28x | | 600+50x=70 | | 60=9v+3 | | 60=9w+3 | | 7w-6+6w+6=180 | | -m-10=2m-1 | | (10x^2)x(2x)=9 | | 10x^2x2x=9 | | X+(-21)x=44 | | 8(4k)=32+k | | 7(x+4)+6x=-37 | | 10x-4x-6+2x=8x-3 | | -3(2w-5)+5w=7(w+3) | | 57-u=252 | | n/5=4-2(n) | | 0.3p+0.7=-3.8-0.6p | | -2(v+1)+5v=3(v+1)-5 | | 5y^2+16y+55=0 | | -0.5(x+4.8)=6.7 | | -0.5(c+4.8)=6.7 | | -0.9-3.3y=13.77 | | 6(x+5)=12(2x-2) | | 2.10+0.80=11.7p |